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Introduction 

The Traumatic Brain Injury Model Systems (TBIMS) National Data and Statistical Center (NDSC) 
strives to advance data analysis techniques with respect to the TBIMS National Database (NDB) 
by continuing to offer a range of analytic options for the TBIMS community to maintain their 
position at the forefront of rehabilitation research. A principal goal of the NDSC is to recognize 
when new analytic methods may be applicable for the NDB, how they can be implemented, and 
ultimately to provide consultation on these methods to interested researchers. Machine 
learning is one such method. The NDSC has therefore investigated the applicability of machine 
learning to the NDB as described in this white paper through the examples of three algorithms. 

This white paper offers a proof of concept of the utility of machine learning in general to 
analyze NDB data in future studies and documents the algorithms, code functions, and results 
using the R coding language. We used standardized R packages for the selected algorithms in 
order to eliminate decisions and variation intrinsic in writing our own algorithm. This choice is 
also easily defensible to publication reviewers. 

We selected the below three standard machine learning models as examples of classification, 
deep learning, and regression. The transformation of the raw TBIMS data used with each model 
is discussed in the first section below, followed by sections for each model that include 
algorithm definition and features, R code, and results of an example. Note that the R code can 
be run directly from a package (TBIMSMachineLearning) available for download on the NDSC 
website (https://www.tbindsc.org/StatisticTools.aspx), or it can be copied and pasted into a 
local copy of RStudio. 

Transformation of Data 

The first phase of any analysis project is data transformation, also known as “data cleaning,” 
“data preprocessing,” or “feature engineering”. In the case of traditional machine learning 
algorithms, the main goal of this transformation process is to improve modeling performance. 
Moreover, different machine learning models have different requirements, in terms of the type 
of target or feature engineering that best improves the model performance. In general, feature 
engineering often includes feature and target selection or filtering, normalization or scaling, 
appropriate handling of missingness, the need to decide which of similar variables to include in 
a model, restructuring of categorical data, the potential need for dummy encoding, and other 
forms of data cleaning. 

For the algorithms in this white paper, feature engineering was performed via a series of R 
functions which are now contained in an R package called TBIMSDataCleaning that is also 
available for download on the NDSC website (https://www.tbindsc.org/StatisticTools.aspx). 
Users must input their own list of variables. Please note that this package is meant to work on 
datasets from 2025 and forward. 

https://www.tbindsc.org/StatisticTools.aspx
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Please note that the decisions in the subsections below are specific to the goals of the selected 
algorithms; future researchers should take care to modify the R package or to transform the 
data to their own specifications if desired. 

Handling Categorical Variable Missing Value (8X) Codes 
The TBIMS categorical variables have been standardized to ensure consistency in their missing 
data value codes. These include the following: 

• 6-based (e.g., 6, 66, 666, 6666) – Variable Did Not Exist 
• 7-based (e.g., 7, 77, 777, 7777) – Refused 
• 8-based (e.g., 8, 88, 888, 8888) – Not Applicable 
• 9-based (e.g., 9, 99, 999, 9999) – Unknown 

For the purposes of our selected algorithms, data cleaning steps included marking variables 
with certain values as Available/Not Available and subsequently coding them as Missing/Not 
Missing. 

The 8-based codes in particular pose a problem because they are not strictly coded as 8, 88, 
888, and 8888. In certain cases, 8X codes exist (e.g., 81, 87, 89). See the Appendix for details. 
These variables must be addressed individually based on the purpose of the study or the 
algorithm chosen in order to decide whether to code them missing or not. 

For example, when we performed the initial data cleaning, we were interested in whether 
someone was Lost or Not Lost for a random forest survival algorithm and whether their data 
was Available or Not Available. The full set of decisions is in the Appendix, but a selection is 
included here to show the reasoning. 

The majority of 8X values for this algorithm represent data that is Not Available. However, for a 
small set of variables this is not true. For example, an IntStatus variable value of 87 has the 
TBIMS Data Dictionary definition of Future FollowUp Period. This value is auto-populated when 
a Form 2 is created, meaning the subject has not had a follow-up interview yet. For the random 
forest survival algorithm’s purposes, participants with this value were considered Not Lost. 

In terms of the LostReasonF variable, participants with the TBIMS Data Dictionary value codes 
of 81 – Not Applicable and 82 – Not Applicable, Expired were considered Not Lost. Those with 
83 – Not Applicable, Funding Not Available were considered to be Lost. 

Similarly, a ReasonNoDataIndF value of 81 – Not Applicable, Funding Not Available was 
considered Lost, but 82 – Not Applicable, Data Was Provided is considered Not Lost. 

Another special case example is with the variable DaysTo1stEmp for the value code 88999 – 
Began Competitive Employment in Prior Follow-Up Year. Rather than coding this data as Not 
Available, we chose to pull the value from the previous follow-up interview. 
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These decisions matter when writing code to turn the 8X values into 0 – Lost or 1 – Not Lost 
values. Only the Not Available values were coded as 8888; the Available codes required a 
variable-by-variable approach. 

Removal of Variables 
Most real-world data analysis and modeling projects involve hundreds or thousands of features. 
In practice, models with many features are more computationally expensive and harder to 
interpret. Although some algorithms tolerate wide data better than others, including large 
numbers of low-information predictors will often degrade model performance. 

A common example of a low-information predictor is one with little or no variance. Such 
features typically contribute little to model accuracy. While some algorithms ignore zero-
variance predictors, they may still increase computational cost, complicate model deployment, 
or disrupt resampling procedures, especially when samples contain only the dominant value. In 
general, low-information predictors are good candidates for removal before model training. For 
the purposes of this work, TBIMS administrative variables and variables with little or no 
variance were removed as neither provides information to the algorithms. 

After separating all variables into the different types below, an initial seventeen were removed 
immediately. These included zip codes, death codes, dates, and various administrative variables 
that were unnecessary to the analysis using any of the models in this paper. Variables were also 
separated into binary and non-binary, the latter of which could be ordered. Length of Stay (LOS) 
variables were classified as continuous because of high values for some participants. 

Correlated Variables 

Including highly-correlated variables in a model risks overfitting and complicates model 
interpretation. The R data cleaning package includes a function to eliminate the least complete 
variable of any highly correlated continuous variables. This function provides a Spearman’s 
correlation for each variable with every other variable. Running all continuous variables 
through it produces their correlation matrix. 

The decision of which variables to drop can then be made with input from clinical advisors or 
data SMEs, based on the correlations. For example, there is a little over 40% missingness in the 
Income variable ; some researchers prefer to use the Employment variable instead to represent 
socioeconomic status as it has only 1% missing data. For models in this white paper, Income 
was dropped and Employment retained. 

Categorical Variables 

Biostatisticians using TBIMS categorical variables historically restructure them based on the 
needs of the study. For the purposes of this white paper, categories within a variable were 
restructured based on cell counts. Within a given variable, some categories are 
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underrepresented and others are overrepresented. The Appendix contains a list of variables the 
NDSC suggests considering for this purpose. 

Note that the Cause Ecodes were removed from the dataset because they are external (not 
ICD) cause category codes. 

Dummy (Indicator) Variables 

Dummy encoding is beneficial for many machine learning algorithms because it transforms 
categorical variables into a binary format (0/1) that removes any unintended ordinal 
relationships, allowing models to treat each category as distinct and unrelated. This is especially 
important for algorithms that rely on distance metrics or linear relationships, such as support 
vector machines or k-nearest neighbors, which can misinterpret numeric category labels as 
having an order. In contrast, tree-based models like random forests, gradient boosting 
machines, and decision trees generally do not require dummy encoding. These algorithms 
handle categorical variables directly or through label encoding without assuming any ordinal 
structure. 

The R data cleaning package includes a function to take a data frame as input, create the 
dummy variables, and return the processed data frame. Users should take into consideration 
the machine learning algorithm being used and weigh the effects of increased dataset width 
when choosing to dummy encode a predictor. 

The Appendix contains a list of variables the NDSC suggests considering for this purpose. If all 
suggested variables are dummied, the dataset may become too wide and unwieldy, and the 
resultant model will be very difficult to interpret. For this white paper some categorical 
variables were collapsed into more condensed categories. These collapsed variables were then 
run through the R function prior to training distance-based models. 

Variables that Change Over Time 

The TBIMS NDB contains many variables that change over time, found in the Appendix. 
Depending on the goal of a study or the requirements of the selected algorithm, such a variable 
may be included at one or more timepoints or in a different way altogether. Variables must be 
considered on a case-by-case basis due to the differing uses of each. 

For example, TBIMS Form 1 contains FIM variables at both admission and discharge. Assuming a 
researcher wanted to include only one as a covariate in a model, instead of deciding a priori 
which to include, one strategy is to run three models using FIM at admission (FIMAdmit), FIM at 
discharge (FIMDischarge), and the calculated change in FIM (DeltaFIM), respectively. 

A researcher or clinician can use the results of each to decide whether any was suggestive of 
clinical importance and should thus be included in the model. 
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Calculated Variables 

For purposes of this white paper, a calculated variable is one that is created via a formula using 
other variables as inputs. For example, the variable Body Mass Index at Injury (BMI) is 
calculated using the variables Height (in inches) and Weight (in pounds) as inputs to the formula 
[Weight/(Height)2]*703. These types of calculated variables are distinct from the term 
‘calculated variable’ in the TBIMS Data Dictionary, which encompasses both this type as well as 
any form of manipulation that results in a new variable (e.g., collapsing of categories within a 
categorical variable). 

The Appendix identifies all variables from the TBIMS Data Dictionary that met this white paper’s 
definition of calculated variables. These calculated variables were then eliminated from the 
model because of correlation risk, while the input variables were retained. However, modeling 
practitioners could decide to include calculated variables and exclude dependent variables as a 
strategy for dimensional reduction for model performance improvement. 

Imputation 
Many machine learning algorithms require complete datasets and cannot handle missing values 
natively. Algorithms such as logistic regression, support vector machines, and k-nearest 
neighbors typically fail or return errors when presented with missing values, making imputation 
a necessary preprocessing consideration. Imputation allows these models to be trained on the 
full dataset without discarding incomplete rows and may help preserve valuable information. In 
contrast, some tree-based models such as XGBoost and certain implementations of decision 
trees can handle missing values internally by learning optimal default directions during tree 
construction, reducing the need for prior imputation. The decision to impute missing data 
should be based on adjusting the signal from the predictors in a way that improves model 
performance. It is misleading to assume that imputation accurately completes a patient record 
with a value that would have been provided by the patient. 

Data imputation methods vary depending on whether the missing values are in categorical or 
continuous variables. For categorical data, common imputation techniques include replacing 
missing values with the most frequent category (mode), a constant like "missing," or using 
predictive models such as decision trees or k-nearest neighbors to estimate the missing 
category. For continuous data, typical methods include mean or median imputation, 
interpolation, or model-based approaches like regression or k-nearest neighbors. More 
advanced techniques for both types include multiple imputation, which accounts for 
uncertainty by generating several plausible values, and iterative methods such as MICE 
(Multiple Imputation by Chained Equations), which can model each variable conditionally on 
the others. 

For the support vector machine and artificial neural network algorithms in this white paper, all 
predictors missing more than 10% were filtered and the remaining predictors (with less than 
10% missingness) were imputed. Categorical variables were imputed with the most prevalent 
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values (the mode), while continuous variables were imputed with means. The R data cleaning 
package contains these functions.  

Note that data were reviewed for missingness and filled in also where it made sense; for 
example, inserting ‘variable did not exist’ codes instead of blanks, where applicable. 

For this white paper, the missingness review was performed repeatedly as alternate strategies 
were applied. Plots of missingness are displayed first on the complete set of variables and after 
each stage after variable removal. This is for demonstration only. 

Scaling/Normalization 
Data scaling and normalization are important preprocessing steps for many machine learning 
algorithms because they ensure that features contribute equally to the model, especially when 
they are on different scales. Algorithms that rely on distance calculations or gradient-based 
optimization, such as k-nearest neighbors, support vector machines, logistic regression, and 
neural networks, often perform better with scaled or normalized data, as unscaled features can 
disproportionately influence the model. In contrast, tree-based algorithms such as decision 
trees, random forests, and gradient boosting methods (e.g., XGBoost) are generally insensitive 
to feature scaling, as they split data based on feature thresholds rather than distances or 
gradients. 

For example, many TBIMS indicator codes are intentionally one order of magnitude greater 
than the maximum response option values (e.g., for TransModeF 99 = Unknown and the 
response options are 1, 2, 3, or 4 only). The inclusion of such indicator codes may require the 
predictor to be scaled or normalized prior to training the model. For the algorithms in this white 
paper, indicator codes were removed and the values were treated as missing. 

For example, all 9-based codes (e.g., 9, 99, 999, and 9999) were run through the R function and 
changed to 9999. Similarly, all 6-based and 7-based codes were changed to be their highest 
level. Special attention needed to be paid to 8-based codes as described above in the Handling 
Categorical Variable Missing Value (8X) Codes section. 

In the case of scaling and normalization, however, care is taken to place the special codes on an 
ordinal scale and must be done on a case-by-case basis. For example, for the TransModeF 
variable, a code of 82 – Not Applicable: No Motorized Transportation does not necessarily 
indicate no transportation whatsoever. If a researcher wanted to put the information contained 
in this value code on the ordinal scale, they could either choose to recode it as 0 – No 
Motorized Transportation or as 5 – Non-Motorized Transportation. 

The R data cleaning package does not include functions for scaling and normalization as we 
used extant R functions rather than writing our own. 
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Dates 
Working with dates in machine learning requires more attention than working with other 
object class types. To prepare a Date object class variable for machine learning, meaningful 
numerical or categorical features must be extracted from the raw date values, as most 
algorithms cannot work directly with date objects. Commonly extracted components include 
the year, month, day, day of the week, hour (if time is included), and whether the date falls on 
a weekend or holiday. Computing elapsed time features, such as the number of days since a 
reference date or between events, may be included in a training set. Depending on the 
problem, cyclical transformations (e.g., using sine and cosine) may be useful for capturing 
periodic patterns in features like month or day of the week. These derived features can then be 
used in place of the original date variable, but users are warned that the resulting model will 
require the same data type transformation to predict new data. 

For this white paper, predictors of object class Date were removed. It is also important to note 
that, for computational efficiency, a limited selection of only a few variables were included in 
the training of the examples. As a result, none of our examples include special case variables 
such as imaging data. 

Model Selection and Development 

The three models below represent standard machine learning algorithms for classification, 
deep learning, and regression problems. 

Model 1: Support Vector Machine 

Definition 

The support vector machine (SVM) model is a widely-used supervised learning method for 
classification problems, which involves defining boundaries for separating different classes 
within a variable. Note that the SVM algorithm cannot handle missing data. 

The basic strategy is to optimize a “hyperplane” in the feature space that separates the classes. 
In real world applications, a hyperplane that perfectly separates the classes isn’t always 
practical. SVMs address this by accepting boundaries that best – not necessarily perfectly – 
separate the classes and by using kernel functions to implicitly map input non-linear data into a 
higher-dimensional space where the data becomes linearly separable. The latter technique is 
referred to as the “kernel trick.” 
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To illustrate the model for this white paper, we selected the Satisfaction With Life Scale (SWLS) 
as the variable to be classified because it is normally distributed and easy to interpret. 1 
Variables that are not normally distributed must be transformed prior to running the model. 
The specific variable name is SWLSTotF, which is the total SWLS score at follow-up (Form 2). We 
further decided to use SWLSTotF only at the Year 2 follow-up for purposes of this example. 

The SWLS data consists of responses to the measure’s five items, each scored on a 7-point 
Likert scale. The total score is calculated by summing the scores for each of the five items, 
resulting in a total score ranging from 5 to 35, with higher scores indicating greater satisfaction 
with life. The accepted ranges and cutoff scores are as follows: 

31-35: Extremely satisfied 
26-30: Satisfied 
21-25: Slightly satisfied 
20: Neutral 
15-19: Slightly dissatisfied 
10-14: Dissatisfied 
5-9: Extremely dissatisfied 

We defined two classes for our example. The first class contains subjects who are “extremely 
dissatisfied,” meaning individuals with SWLSTotF scores of <10. The second class contains all 
others. We then ran the SVM algorithm using the following subset of variables to create the 
classifications of SWLS values at Form 2, Year 2: 

Days in Post-Traumatic Amnesia (PTADays) 
Time to Follow Commands (TFCDays) 
Total Length of Stay (LOSTot) 
Days from Injury to Rehab Admission (DAYStoREHABadm) 
Days from Injury to Rehab Discharge (DAYStoREHABdc) 
Marital status (MarF) 
Participation (PARTSocialF, PARTProductivityF, PARTOutAboutF, PARTSummaryF) 
Anxiety (GAD7TOTF) 
Depression (PHQ9TOTF) 

While we could have chosen the entire set of TBIMS variables as our predictors, we limited our 
selection to save run time for the model. With enough time and computing power, we could 

 
1 Note: It would be relatively easy to swap this variable out with another normally distributed one. The data 
cleaning has already been done using the R package on the NDSC website (first checking to make sure the data 
cleaning decisions are suitable to your specific analysis). The algorithm code would only need to have the 
classification variable swapped out, which lends itself to rapid analysis. 
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make the set of predictors as large as we want. Readers of this white paper can substitute their 
own predictors into the code if desired. 

Key Components/Steps 

Below is the code used to set up and run the SVM model, including code comments. Readers of 
this white paper are free to copy the code into their own R environment and use it as written or 
revise it for their own needs. 

Step 1: Load data 

load("F1F2.RData") 

User Function to set up datasets. 

select_columns <- function(df, vars) { 
  # Check if all specified variables exist in the dataframe 
  missing_vars <- setdiff(vars, names(df)) 
   
  if (length(missing_vars) > 0) { 
    warning("The following variables are not in the dataframe: ", paste(missi
ng_vars, collapse = ", ")) 
  } 
   
  # Select only the existing columns 
  df.Selected <- df[, vars[vars %in% names(df)], drop = FALSE] 
   
  return(df.Selected) 
} 
 
# Example usage: 
#data <- data.frame(A = 1:5, B = 6:10, C = 11:15) 
#vars <- c("A", "C") 
#new_df <- select_columns(data, vars) 
#print(new_df) 
############################################################# 

Step 2: Build data for SWLS 

library(TBIMS) 
library(dplyr) 
library(tidyverse) 
 
vars <- c("Mod1Id","PTADays", "TFCDays", "LOSTot", "DAYStoREHABadm", "DAYStoR
EHABdc") 
df.SWLSF1 <- select_columns(df.Form1, vars) 
 
vars <- c("Mod1Id","SWLSTOTF", "PHQ9TOTF", "GAD7TOTF", "PARTSummaryF", "PARTO
utAboutF",  
          "PARTProductivityF", "PARTSocialF", "MarF") 
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df.SWLSF2 <- select_columns(df.Form2, vars) 
 
df.SWLS  <- Combine_dataframes_ID(df.SWLSF2, df.SWLSF1, "Mod1Id") 
TBIMS::Missingness_Barplot(df.SWLS) 

The bar plot output from the code shows missingness for each of the variables we selected for 
the model. There are roughly 80,000 observations initially. We ran the missingness report 
repeatedly to visualize the effect of the choices we made. 

 

We decided to ignore all cases with missing data and used the following code to remove them. 
This reduced our number of observations to around 20,000 as can be seen in the final 
missingness bar plot. 

df.SWLS_3 <- df.SWLS_2[complete.cases(df.SWLS_2), ] 
TBIMS::Missingness_Barplot(df.SWLS_3) 
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Step 3: Create the SWLS Categories 

First we created the standard SWLS ranges referenced above. 

# This function bins data from a specified column in a dataframe based on val
ue ranges provided. 
# 
# PARAMETERS: 
#   - df: The input dataframe. 
#     TYPE: dataframe 
#   - column_name: The name of the column in the dataframe to bin. 
#     TYPE: character 
#   - value_ranges: A vector containing the value ranges to bin the data. 
#     TYPE: numeric vector 
#     EXAMPLE INPUT: c(0, 10, 20, 30) 
# RETURNS: 
#   - The input dataframe with a new column added containing the binned value
s. 
#     TYPE: dataframe 
# EXCEPTIONS: 
#   - This function assumes the dataframe contains the specified column and t
he value ranges are in ascending order. 
#   - It does not handle cases where the value to bin is outside the specifie
d ranges. 
# Example Usage: 
#   - Create a sample dataframe 
#data <- data.frame(id = 1:5, values = c(5, 15, 25, 10, 20)) 
#   - Define the value ranges for binning 
#ranges <- c(0, 10, 20, 30) 
#   - Call the function to bin the 'values' column in the dataframe 
#result_df <- bin_data(data, "values", ranges) 
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bin_data <- function(df, column_name, value_ranges) { 
  # Create a new column to store the binned values 
  df$bin_column <- cut(df[[column_name]], breaks = value_ranges, labels = FAL
SE, include.lowest = TRUE) 
  return(df) 
} 

We subsequently created the two classes: Extremely Dissatisfied and Not Extremely 
Dissatisfied. 

ranges <- c(0, 9, 35) 
df.SWLS_4 <- bin_data(df.SWLS_3, "SWLSTOTF", ranges) 
#df.SWLS_4 <- df.SWLS_4[0:(nrow(df.SWLS_4) - 17000 ),] # Used to sample the d
ata 

Step 4: Run the model 

In this model, we focused on the following steps: 

• Ensure all predictors and the response are numeric 
• Scale the predictor features 
• Split the data into an 80/20 train-test split 
• Check for class imbalance and apply SMOTE if necessary 
• Tune SVM hyperparameters using a radial basis function kernel 
• Use cross-validation to select the best parameters 

library(e1071) 
library(caret) 
library(DMwR) 
library(DMwR2) 
library(ggplot2) 
 
train_svm <- function(data, predictors, response) { 
  # Ensure response variable is a factor 
  data[[response]] <- as.factor(data[[response]]) 
   
  # Scale predictor variables 
  data[, predictors] <- scale(data[, predictors]) 
   
  # Split the data into training (80%) and testing (20%) 
  set.seed(123)  # For reproducibility 
  train_index <- createDataPartition(data[[response]], p = 0.8, list = FALSE) 
  train_data <- data[train_index, ] 
  test_data <- data[-train_index, ] 
   
  # Ensure test set response variable has the same factor levels as the 
training set 
  test_data[[response]] <- factor(test_data[[response]], levels = 
levels(train_data[[response]])) 
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  # Check for class imbalance and apply SMOTE if necessary 
  class_counts <- table(train_data[[response]]) 
  min_class <- min(class_counts) 
  if (min_class / max(class_counts) < 0.5) {  # Imbalance threshold 
    message("Imbalanced Target - Applying SMOTE") 
    train_data <- SMOTE(as.formula(paste(response, "~", paste(predictors, 
collapse = "+"))), data = train_data) 
  } 
   
  # Define parameter tuning grid 
  tune_grid <- expand.grid( 
    C = 2^(-5:5),  # Regularization parameter 
    sigma = 2^(-5:5)  # RBF kernel parameter 
  ) 
   
  # Train SVM with hyperparameter tuning 
  svm_model <- train( 
    as.formula(paste(response, "~", paste(predictors, collapse = "+"))), 
    data = train_data, 
    method = "svmRadial", 
    trControl = trainControl(method = "cv", number = 5),  # 5-fold cross-
validation 
    tuneGrid = tune_grid 
  ) 
   
  # Predict on test data 
  predictions <- predict(svm_model, test_data) 
   
  # Ensure predictions are factors with the same levels as the actual 
response 
  predictions <- factor(predictions, levels = levels(test_data[[response]])) 
   
  # Compute performance metrics 
  confusion <- confusionMatrix(predictions, test_data[[response]]) 
  accuracy <- confusion$overall["Accuracy"] 
   
  # Extract per-class metrics correctly 
  if (is.matrix(confusion$byClass)) { 
    precision <- confusion$byClass[, "Precision"] 
    recall <- confusion$byClass[, "Recall"] 
  } else { 
    precision <- confusion$byClass["Precision"] 
    recall <- confusion$byClass["Recall"] 
  } 
 
  # Compute F1-score 
  f1_score <- 2 * (precision * recall) / (precision + recall) 
 
  # Aggregate multi-class scores (macro-average) 
  macro_precision <- mean(precision, na.rm = TRUE) 
  macro_recall <- mean(recall, na.rm = TRUE) 
  macro_f1 <- mean(f1_score, na.rm = TRUE) 
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  # Generate performance plots 
  plot_data <- data.frame(True = test_data[[response]], Predicted = 
predictions) 
  plot <- ggplot(plot_data, aes(x = True, y = Predicted)) + 
    geom_jitter(width = 0.2, height = 0.2, alpha = 0.5) + 
    labs(title = "SVM Predictions vs True Values", x = "True Values", y = 
"Predicted Values") + 
    theme_minimal() 
   
  return(list( 
    model = svm_model, 
    test_data = test_data, 
    performance = list( 
      accuracy = accuracy, 
      precision = macro_precision, 
      recall = macro_recall, 
      f1_score = macro_f1 
    ), 
    plot = plot 
  )) 
} 

######################################################### 
 
set.seed(42) 
# Define predictors and response 
predictors <- colnames(df.SWLS_4)[3:(ncol(df.SWLS_4) - 1)] 
response <- "bin_column" 
#df.SWLS_4$bin_column <- as.factor(df.SWLS_4$bin_column) 
 
# Train the SVM model 
svm_results <- train_svm(df.SWLS_4, predictors, response) 
Imbalanced Target - Applying SMOTE 

Model Fit and Results 

Accuracy, precision, recall, and F1 score are all metrics used to measure how accurate a model 
is. Accuracy is the percentage of correctly classified cases. Precision represents the ratio of 
correctly classified cases of those in the primary class (Extremely Dissatisfied) to the total 
predicted to be in this class. Recall is the ratio of those in the primary class to the total who are 
truly in the class. And F1 score is a combination of precision and recall that balances the two 
metrics. 

Our SVM model resulted in the following performance metric values: 

Accuracy = 0.8845883 
Precision = 0.2680412 
Recall = 0.2184874 
F1 Score = 0.2407407 
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Additionally, we generated a plot of predicted versus true values using the test data that was 
separated from the training data above. This type of plot is called a confusion matrix and is 
another way to assess the performance of the SVM and other classification algorithms. To 
produce a confusion matrix the actual values must be known, which they are in our case. 

In the figure below, 1 = Not Extremely Dissatisfied and 2 = Extremely Dissatisfied. 

 

 

Confusion matrices are essentially cross-tabulations which can be represented with counts in 
each quadrant or, as in our figure, with data points. The 2,2 quadrant in the top right represents 
those cases who are actually Extremely Dissatisfied and who were predicted to be Extremely 
Dissatisfied. The 1,1 quadrant in the bottom left represents those who were truly Not 
Extremely Dissatisfied and were predicted correctly. The 1,2 and 2,1 quadrants represent those 
cases who were incorrectly predicted, known as Type 1 and Type 2 errors. 

Researchers who run this code can add or subtract predictor variables to try to achieve greater 
performance metric values or fewer Type 1 and Type 2 errors. We selected the list of predictor 
variables above as an educated guess to illustrate the algorithm. 
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Model 2: Artificial Neural Network 

Definition 

An artificial neural network (ANN) is a supervised machine learning model that is patterned 
after the human brain in terms of both structure and function. It consists of layers of 
interconnected nodes (or artificial neurons), which include an input layer that receives the data, 
one or more hidden layers that process the information, and an output layer that conveys the 
final class predictions. As with the SVM model, ANN algorithms can identify non-linear patterns 
in data, which makes them effective in handling complex or high-dimensional datasets. 

Both SVM and ANN can be used to classify data into predefined classes, which is the goal of the 
examples in this white paper. The data used for ANN classification input is the same as used for 
the SVM. 

Key Components/Steps 

Below is the code used to set up and run the Random Forest model, including code comments. 
Readers of this white paper are free to copy the code into their own R environment and use it 
as written or revise it for their own needs. 

Step 1: Load data 

load("F1F2.RData") 

User Function to set up datasets. 

select_columns <- function(df, vars) { 
  # Check if all specified variables exist in the dataframe 
  missing_vars <- setdiff(vars, names(df)) 
   
  if (length(missing_vars) > 0) { 
    warning("The following variables are not in the dataframe: ", paste(missi
ng_vars, collapse = ", ")) 
  } 
   
  # Select only the existing columns 
  df.Selected <- df[, vars[vars %in% names(df)], drop = FALSE] 
   
  return(df.Selected) 
} 
 
# Example usage: 
#data <- data.frame(A = 1:5, B = 6:10, C = 11:15) 
#vars <- c("A", "C") 
#new_df <- select_columns(data, vars) 
#print(new_df) 
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Step 2: Build Data for ANN 

library(TBIMS) 
library(dplyr) 
library(tidyverse) 
 
vars <- c("Mod1Id","PTADays", "TFCDays", "LOSTot", "DAYStoREHABadm", "DAYStoR
EHABdc") 
df.SWLSF1 <- select_columns(df.Form1, vars) 
 
#vars <- c("Mod1Id","SWLSTOTF", "PHQ9TOTF", "GAD7TOTF", "PARTSummaryF", "PART
OutAboutF", "PARTProductivityF", "PARTSocialF", "MarF") 
vars <- c("Mod1Id","SWLSTOTF") 
df.SWLSF2 <- select_columns(df.Form2, vars) 
 
df.SWLS  <- Combine_dataframes_ID(df.SWLSF2, df.SWLSF1, "Mod1Id") 
TBIMS::Missingness_Barplot(df.SWLS) 

The bar plot output from the code shows missingness for each of the variables we selected for 
the model. Note that the input variables are a different subset than were selected for SVM. 
There are roughly 80,000 observations initially. 
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Step 3: Use Recoding Function, Address Missingness, and Create Classes 

We again decided to ignore all cases with missing data and used the following code to remove 
them. 

vec <- c(888, 999) 
df.SWLS_1 <- TBIMS::replace_values_with_na(df.SWLS, vec) 
df.SWLS_2 <- df.SWLS_1[!is.na(df.SWLS_1$SWLSTOTF),] 
TBIMS::Missingness_Barplot(df.SWLS_2) 
df.SWLS_3 <- df.SWLS_2[complete.cases(df.SWLS_2), ] 
TBIMS::Missingness_Barplot(df.SWLS_3) 

This reduced our number of observations to around 30,000 as can be seen in the final 
missingness bar plot. 

 

Once again the variable to be classified is the Satisfaction With Life Scale (SWLS), which we 
divided into the two predefined classes: Extremely Dissatisfied and All Other. 

# This function bins data from a specified column in a dataframe based on val
ue ranges provided. 
# 
# PARAMETERS: 
#   - df: The input dataframe. 
#     TYPE: dataframe 
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#   - column_name: The name of the column in the dataframe to bin. 
#     TYPE: character 
#   - value_ranges: A vector containing the value ranges to bin the data. 
#     TYPE: numeric vector 
#     EXAMPLE INPUT: c(0, 10, 20, 30) 
# RETURNS: 
#   - The input dataframe with a new column added containing the binned value
s. 
#     TYPE: dataframe 
# EXCEPTIONS: 
#   - This function assumes the dataframe contains the specified column and t
he value ranges are in ascending order. 
#   - It does not handle cases where the value to bin is outside the specifie
d ranges. 
# Example Usage: 
#   - Create a sample dataframe 
#data <- data.frame(id = 1:5, values = c(5, 15, 25, 10, 20)) 
#   - Define the value ranges for binning 
#ranges <- c(0, 10, 20, 30) 
#   - Call the function to bin the 'values' column in the dataframe 
#result_df <- bin_data(data, "values", ranges) 
 
bin_data <- function(df, column_name, value_ranges) { 
  # Create a new column to store the binned values 
  df$bin_column <- cut(df[[column_name]], breaks = value_ranges, labels = FAL
SE, include.lowest = TRUE) 
  return(df) 
} 
ranges <- c(0, 9, 35) 
df.SWLS_4 <- bin_data(df.SWLS_3, "SWLSTOTF", ranges) 
df.SWLS_4$bin_column <- df.SWLS_4$bin_column - 1 

Step 4: Set Up Predictors and Target Response 

We used the H2O package in R to build and train the neural network. Disclaimer: The H2O 
package sends the data to an external server, runs the model on the server, and then returns 
the results. It is unknown what happens to the data on the server after the model is run, 
which is a potential security risk if the data includes any Personally Identifiable Information. 
The authors of this white paper have not contemplated any data security features; that is the 
responsibility of anyone running this code. Please check with your IT team if you have 
concerns or make sure not to include any sensitive data at all. 

The call to the function sets a two-minute limitation on the server connection. For this reason, 
the example keeps the expected processing time limited. The function accepts a dataframe, a 
string vector of predictors, a target label, and an integer defining the number of hidden layers 
between the input and output layers. For this example, the number of hidden layers is 
restricted to be from 1 to 5. If the user requests more than 5 hidden layers, the function warns 
the user that the limit is 5 and changes the number of hidden layers to 5. For each hidden layer, 
the square root of the number of input features should be a used for the number of neurons in 
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the hidden layer. The function optimizes and trains a shallow feedforward, fully connected 
neural network for classification. The function optimizes the following hyperparameters: 
learning rate, batch size, and number of epochs. The ANN uses a ReLU (Rectified Linear Unit) 
activation function for hidden layers and a sigmoid activation function in the output layer. 

set.seed(2025) 
# Define predictors and response 
predictors <- colnames(df.SWLS_4)[3:(ncol(df.SWLS_4) - 1)] 
response <- "bin_column" 

train_shallow_nn_h2o <- function(data, predictors, target, num_hidden_layers,  
                                 max_runtime_secs, nfolds = 5, seed = 2025) { 
   
  # Initialize H2O 
  h2o.init() 
  h2o.no_progress()  # Turn off progress bars for cleaner output 
   
  # Validate number of hidden layers 
  if (num_hidden_layers > 5) { 
    warning("The maximum number of hidden layers is 5. Setting 
num_hidden_layers to 5.") 
    num_hidden_layers <- 5 
  } 
   
  # Convert data to H2O frame and ensure target is factor for classification 
  data_h2o <- as.h2o(data) 
  data_h2o[[target]] <- as.factor(data_h2o[[target]])  # Force conversion to 
factor 
   
  # Define number of neurons in hidden layers (sqrt of input features) 
  num_features <- length(predictors) 
  hidden_units <- floor(sqrt(num_features)) 
   
  # Create hidden layer architecture vector 
  hidden <- rep(hidden_units, num_hidden_layers) 
   
  # Train classification model 
  model <<- h2o.deeplearning( 
    x = predictors, 
    y = target, 
    training_frame = data_h2o, 
    hidden = hidden, 
    activation = "RectifierWithDropout",  # ReLU with dropout 
    standardize = TRUE, 
    adaptive_rate = TRUE,                 # Automatically tunes learning rate 
    nfolds = nfolds,                     # Cross-validation 
    fold_assignment = "Stratified",      # For classification 
    stopping_metric = "AUC",             # AUC for classification 
    stopping_tolerance = 0.001, 
    stopping_rounds = 5, 
    max_runtime_secs = max_runtime_secs, # Limit runtime for tuning 
    seed = seed, 
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    variable_importances = TRUE,         # Get feature importance 
    export_weights_and_biases = TRUE     # Export model weights 
  ) 
   
  # Get model performance metrics 
  perf <- if (nfolds > 1) h2o.performance(model, xval = TRUE) else 
h2o.performance(model) 
   
  # Extract classification metrics 
  metrics <<- list( 
    confusion_matrix = h2o.confusionMatrix(perf), 
    auc = h2o.auc(perf), 
    logloss = h2o.logloss(perf), 
    accuracy = h2o.accuracy(perf), 
    f1 = h2o.F1(perf), 
    precision = h2o.precision(perf), 
    recall = h2o.recall(perf) 
  ) 
   
  # Return model and metrics 
  list( 
    model = model, 
    metrics = metrics, 
    hidden_layers = hidden, 
    model_summary = model@model$model_summary, 
    cross_validation_metrics = if (nfolds > 1) 
model@model$cross_validation_metrics_summary else NULL, 
    is_classification = TRUE  # Explicitly mark as classification model 
  ) 
} 

Step 5: Call the ANN Function 

library(h2o) 
ANN_H2OResultList <- train_shallow_nn_h2o( 
  data = df.SWLS_4, 
  predictors = predictors, 
  target = response, 
  num_hidden_layers = 2, 
  max_runtime_secs = 120 
) 

Model Fit and Results 

Connection successful! 
 
R is connected to the H2O cluster:  
    H2O cluster uptime:         4 minutes 58 seconds  
    H2O cluster timezone:       America/Los_Angeles  
    H2O data parsing timezone:  UTC  
    H2O cluster version:        3.47.0.6891  
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    H2O cluster version age:    5 days  
    H2O cluster name:           H2O_started_from_R_emung_mld906  
    H2O cluster total nodes:    1  
    H2O cluster total memory:   1.43 GB  
    H2O cluster total cores:    2  
    H2O cluster allowed cores:  2  
    H2O cluster healthy:        TRUE  
    H2O Connection ip:          localhost  
    H2O Connection port:        54321  
    H2O Connection proxy:       NA  
    H2O Internal Security:      FALSE  
    R Version:                  R version 4.5.0 (2025-04-11 ucrt)  

The code below is used to assess the model fit and output fit statistics and plots. 

analyze_h2o_model <- function(h2o_model_result) { 
  # Load required packages 
  if (!requireNamespace("ggplot2", quietly = TRUE)) 
install.packages("ggplot2") 
  if (!requireNamespace("gridExtra", quietly = TRUE)) 
install.packages("gridExtra") 
  library(ggplot2) 
  library(gridExtra) 
   
  # Extract components from the model result 
  model <- h2o_model_result$model 
  is_classification <- h2o_model_result$is_classification 
  metrics <- h2o_model_result$metrics 
   
  # Create empty list to store plots 
  plots <- list() 
   
  # 1. Print Model Summary 
  cat("=== MODEL SUMMARY ===\n") 
  print(h2o_model_result$model_summary) 
   
  # 2. Print Performance Metrics with proper null checks 
  cat("\n=== PERFORMANCE METRICS ===\n") 
   
  # Define safe_print_metric function first 
  safe_print_metric <- function(metric_value, metric_name) { 
    if (!is.null(metric_value)) { 
      if (is.numeric(metric_value)) { 
        cat(sprintf("%s: %.3f\n", metric_name, metric_value)) 
      } else { 
        cat(sprintf("%s: %s\n", metric_name, metric_value)) 
      } 
    } else { 
      cat(sprintf("%s: Not available\n", metric_name)) 
    } 
  } 
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  if (is_classification) { 
    cat("Classification Model\n") 
    safe_print_metric(metrics$auc, "AUC") 
    safe_print_metric(metrics$logloss, "LogLoss") 
    safe_print_metric(metrics$accuracy, "Accuracy") 
    safe_print_metric(metrics$f1, "F1 Score") 
    safe_print_metric(metrics$precision, "Precision") 
    safe_print_metric(metrics$recall, "Recall") 
     
    cat("\nConfusion Matrix:\n") 
    if (!is.null(metrics$confusion_matrix)) { 
      print(metrics$confusion_matrix) 
    } else { 
      cat("Not available\n") 
    } 
  } else { 
    cat("Regression Model\n") 
    safe_print_metric(metrics$mse, "MSE") 
    safe_print_metric(metrics$rmse, "RMSE") 
    safe_print_metric(metrics$mae, "MAE") 
    safe_print_metric(metrics$r2, "R-squared") 
  } 
   
  # 3. Variable Importance Plot 
  if (!is.null(model@model$variable_importances)) { 
    varimp <- as.data.frame(h2o.varimp(model)) 
    if (nrow(varimp) > 0) { 
      plots$varimp <- ggplot(varimp, aes(x = reorder(variable, 
scaled_importance),  
                                   y = scaled_importance)) + 
        geom_bar(stat = "identity", fill = "steelblue") + 
        coord_flip() + 
        labs(title = "Variable Importance",  
             x = "Features",  
             y = "Scaled Importance") + 
        theme_minimal() 
    } 
  } 
   
  # 4. Training Metrics History Plot 
  if (!is.null(model@model$training_metrics)) { 
    history <- 
as.data.frame(model@model$training_metrics@metrics$training_metrics) 
    if (is_classification && !is.null(history$classification_error)) { 
      plots$error_history <- ggplot(history, aes(x = epoch, y = 
classification_error)) + 
        geom_line(color = "red") + 
        labs(title = "Training Error History",  
             x = "Epoch",  
             y = "Classification Error") + 
        theme_minimal() 
    } 
    if (!is.null(history$mse)) { 
      plots$mse_history <- ggplot(history, aes(x = epoch, y = mse)) + 
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        geom_line(color = "blue") + 
        labs(title = "Training MSE History",  
             x = "Epoch",  
             y = "MSE") + 
        theme_minimal() 
    } 
  } 
   
  # 5. Residuals Plot (for regression) 
  if (!is_classification) { 
    preds <- as.data.frame(h2o.predict(model, 
model@parameters$training_frame)) 
    actual <- 
as.data.frame(model@parameters$training_frame[[model@parameters$y]]) 
    residuals <- actual[,1] - preds[,1] 
    plots$residuals <- ggplot(data.frame(residuals = residuals), aes(x = 
residuals)) + 
      geom_histogram(fill = "steelblue", bins = 30) + 
      labs(title = "Residuals Distribution",  
           x = "Residuals",  
           y = "Count") + 
      theme_minimal() 
  } 
   
  # 6. ROC Curve (for classification) 
  if (is_classification && !is.null(metrics$auc)) { 
    perf <- h2o.performance(model) 
    roc_data <- data.frame( 
      fpr = perf@metrics$thresholds_and_metric_scores$fpr, 
      tpr = perf@metrics$thresholds_and_metric_scores$tpr 
    ) 
    plots$roc <- ggplot(roc_data, aes(x = fpr, y = tpr)) + 
      geom_line(color = "blue") + 
      geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 
      labs(title = sprintf("ROC Curve (AUC = %.3f)", metrics$auc), 
           x = "False Positive Rate",  
           y = "True Positive Rate") + 
      theme_minimal() 
  } 
   
  # Display all plots 
  if (length(plots) > 0) { 
    cat("\n=== VISUALIZATIONS ===\n") 
    grid.arrange(grobs = plots, ncol = 2) 
  } 
   
  # Return metrics and plots invisibly 
  invisible(list( 
    metrics = metrics, 
    plots = plots 
  )) 
} 
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Call the analysis function. 

analysis <- analyze_h2o_model(ANN_H2OResultList) 

The table below shows a summary of the model, followed by a confusion matrix, a plot of 
variable importance, and the ROC curve. 

=== MODEL SUMMARY === 

Status of Neuron Layers: predicting bin_column, 2-class classification, berno
ulli distribution, CrossEntropy loss, 24 weights/biases, 4.2 KB, 375,014 trai
ning samples, mini-batch size 1 

 

 

 

  Actual     
   0 1 Error Rate 
Pr
ed
ict
ed 

0 0 2957 1 1 

1 0 29800 0 0 

Totals 0 32757 0.0902
7 

0.0902
7 

 

layer units type dropout l1 l2 mean_rate rate_rms momentum mean_ 
weight

weight_ 
rms

mean_ 
bias

bias_ 
rms

1 5 Input 0.00% NA NA NA NA NA NA NA NA NA

2 2 Rectifier
Dropout 50.00% 0 0 0.005409 0.002749 0 0.125718 0.461062 0.289791 0.180327

3 2 Rectifier
Dropout 50.00% 0 0 0.004744 0.004863 0 -0.320067 0.493338 -0.014726 0.019906

4 2 Softmax NA 0 0 0.007134 0.001564 0 0.635692 2.406781 0.293285 1.062551
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Model 3: Random Forest Model 

Definition 

Random Forest is an ensemble machine learning model that builds multiple decision trees 
during training and combines their predictions for improved accuracy and robustness. Unlike 
many other model algorithms, a Random Forest machine learning model’s validation is 
efficiently handled through a built-in method called Out-of-Bag (OOB) Error, which eliminates 
the need for a separate validation set or cross-validation in many cases. This approach 
leverages the natural randomness of the forest’s training process. Each decision tree in a 
Random Forest is trained on a different bootstrap sample, a random subset of the training data 
drawn with replacement. Due to this sampling method, approximately 60% of the data is 
typically used to train each tree, while the remaining ~30% (the “out-of-bag” samples) are left 
unseen by that particular tree. 

The OOB error is calculated by using these out-of-bag samples as an implicit validation set. For 
every data point, only the trees that did not include it in their bootstrap training subset make 
predictions. These predictions are then aggregated—either by majority vote (for classification) 
or averaging (for regression), to generate an OOB prediction for that data point. The OOB error 
is then computed by comparing these predictions to the true labels, providing an unbiased 
estimate of the model’s generalization performance, much like cross-validation. 

One of the key advantages of OOB error is its efficiency, as it allows model validation without 
sacrificing additional data for a hold-out set or requiring computationally expensive cross-
validation. It also helps in tuning hyperparameters, such as the number of trees or their depth, 
by monitoring how the OOB error changes during training. Overall, the OOB error serves as a 
robust and convenient validation mechanism intrinsic to Random Forests, ensuring reliable 
performance assessment while optimizing the training process. 

Key Components/Steps 

Below is the code used to set up and run the Random Forest model, including code comments. 
Readers of this white paper are free to copy the code into their own R environment and use it 
as written or revise it for their own needs. 

Step 1: Load data 

load("F1F2.RData") 

Note that this is the same dataset that was used in the SVM model. 

select_columns <- function(df, vars) { 
  # Check if all specified variables exist in the dataframe 
  missing_vars <- setdiff(vars, names(df)) 
   
  if (length(missing_vars) > 0) { 
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    warning("The following variables are not in the dataframe: ", paste(missi
ng_vars, collapse = ", ")) 
  } 
   
  # Select only the existing columns 
  df.Selected <- df[, vars[vars %in% names(df)], drop = FALSE] 
   
  return(df.Selected) 
} 
 
# Example usage: 
#data <- data.frame(A = 1:5, B = 6:10, C = 11:15) 
#vars <- c("A", "C") 
#new_df <- select_columns(data, vars) 
#print(new_df) 

Step 2: Build data for training and testing of the Random Forest model 

library(TBIMS) 
library(dplyr) 
library(tidyverse) 
 
vars <- c("Mod1Id","DRSa","PTADays", "TFCDays", "GCSTot", "LOSRehab", "LOSAcu
te") 
df.RF1 <- select_columns(df.Form1, vars) 
 
df.Form2_2 <- df.Form2[df.Form2[["FollowUpPeriod"]] %in% 2, ] 
 
vars <- c("Mod1Id","FIMTOTF") 
df.RF2 <- select_columns(df.Form2_2, vars) 
 
df.RF3  <- Combine_dataframes_ID(df.RF2, df.RF1, "Mod1Id") 
 
# Some values need to be removed from the training set because the taget is N
A. 
values <- c(9999, NA) 
df.RF <- df.RF3[!df.RF3[["FIMTOTF"]] %in% values, ] 
 
TBIMS::Missingness_Barplot(df.RF) 

The bar plot output from the code shows missingness for each of the variables we selected for 
the model. Note that the Random Forest algorithm can handle missing data. 
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Step 3: Run the user function to train the Random Forest model, and output training and test 
data 

This R function performs Bayesian Optimization to tune a Random Forest regression model with 
the specifications provided by the user. It uses the rBayesianOptimization package along with 
randomForest for training. The function handles missing values by imputing them multiple ways 
(e.g., mean and mode), training multiple trees, and averaging predictions, approximating the 
idea of soft routing. This approach mimics ignoring missing values during the split point 
calculation and pushing them down both paths of the split with reduced weight. For true dual-
path missing handling, we would need to implement a custom tree or use XGBoost, which 
approximates that logic (sends missing values to the direction with the best gain). 

Basic features of this function include: 

• No one-hot encoding needed — factors handled directly 
• Simulates dual-path splitting for missing values by duplicating imputed rows 
• Uses ranger for speed and flexibility 
• Bayesian optimization over 5 hyperparameters 
• Returns the trained model 

optimize_rf_model <- function(df, predictors, target, seed = 2025) { 
  library(rBayesianOptimization) 
  library(caret) 
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  library(dplyr) 
  library(ranger) 
 
  set.seed(seed) 
 
  # Subset data 
  data <- df[, c(predictors, target)] 
 
  # Ensure categorical variables are factors 
  for (col in predictors) { 
    if (is.character(data[[col]])) { 
      data[[col]] <- as.factor(data[[col]]) 
    } 
  } 
 
  # Split into train/test 
  train_idx <- createDataPartition(data[[target]], p = 0.8, list = FALSE) 
  train_data <<- data[train_idx, ] 
  test_data <<- data[-train_idx, ] 
 
  # Function to handle NA by duplicating rows with mean/mode imputations 
  dual_impute <- function(df) { 
    num_vars <- names(df)[sapply(df, is.numeric)] 
    cat_vars <- names(df)[sapply(df, is.factor)] 
 
    impute_mean <- df 
    impute_mode <- df 
 
    for (var in num_vars) { 
      impute_mean[[var]][is.na(impute_mean[[var]])] <- 
mean(impute_mean[[var]], na.rm = TRUE) 
      impute_mode[[var]][is.na(impute_mode[[var]])] <- 
as.numeric(names(which.max(table(impute_mode[[var]])))) 
    } 
 
    for (var in cat_vars) { 
      mode_val <- names(which.max(table(impute_mode[[var]]))) 
      impute_mean[[var]][is.na(impute_mean[[var]])] <- mode_val 
      impute_mode[[var]][is.na(impute_mode[[var]])] <- mode_val 
    } 
 
    rbind(impute_mean, impute_mode) 
  } 
 
  # Optimization target function 
  rf_cv <- function(num.trees, max.depth, mtry, min.node.size, 
sample.fraction) { 
    dtrain <- dual_impute(train_data) 
    dtest <- dual_impute(test_data) 
 
    model <- ranger( 
      formula = as.formula(paste(target, "~ .")), 
      data = dtrain, 
      num.trees = round(num.trees), 
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      mtry = max(1, floor(mtry)), 
      max.depth = round(max.depth), 
      min.node.size = round(min.node.size), 
      sample.fraction = min(sample.fraction, 1), 
      seed = seed, 
      classification = FALSE 
    ) 
 
    preds <- predict(model, data = dtest)$predictions 
    rmse <- sqrt(mean((preds - dtest[[target]])^2)) 
 
    list(Score = -rmse) 
  } 
 
  bounds <- list( 
    num.trees = c(100L, 500L), 
    max.depth = c(3L, 30L), 
    mtry = c(1L, length(predictors)), 
    min.node.size = c(1L, 10L), 
    sample.fraction = c(0.5, 1) 
  ) 
 
  opt_result <- BayesianOptimization( 
  FUN = rf_cv, 
  bounds = bounds, 
  init_points = 8, 
  n_iter = 15, 
  acq = "ei", 
  verbose = TRUE 
  ) 
 
  # Train final model with best params 
  full_data <- dual_impute(data) 
  best <- opt_result$Best_Par 
 
  final_model <- ranger( 
    formula = as.formula(paste(target, "~ .")), 
    data = full_data, 
    num.trees = round(best[["num.trees"]]), 
    mtry = max(1, floor(best[["mtry"]])), 
    max.depth = round(best[["max.depth"]]), 
    min.node.size = round(best[["min.node.size"]]), 
    sample.fraction = min(best[["sample.fraction"]], 1), 
    seed = seed, 
    classification = FALSE, 
    importance = "impurity" 
  ) 
 
  return(final_model) 
} 
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Step 4: Call the random forest training function 

For purposes of our example, we selected the FIM Total Score at Follow-up (FIMTOTF) to be the 
outcome/dependent variable and a small set of predictors to limit the runtime of the model. 

predictors = c(vars <- c("DRSa","PTADays", "TFCDays", "GCSTot", "LOSRehab", "
LOSAcute")) 
target = "FIMTOTF" 
 
model <- optimize_rf_model( 
  df = df.RF, 
  predictors = predictors, 
  target = target 
) 

The training function produced the following results. 

elapsed = 5.97  Round = 1   num.trees = 215.0000    max.depth = 27.0000 mtry 
= 2.0000   min.node.size = 8.0000  sample.fraction = 0.5083176 Value = -17.07
367  
elapsed = 1.50  Round = 2   num.trees = 394.0000    max.depth = 4.0000  mtry 
= 1.0000   min.node.size = 10.0000 sample.fraction = 0.9911107 Value = -17.79
307  
elapsed = 1.61  Round = 3   num.trees = 144.0000    max.depth = 12.0000 mtry 
= 2.0000   min.node.size = 1.0000  sample.fraction = 0.5523794 Value = -17.00
951  
elapsed = 3.89  Round = 4   num.trees = 262.0000    max.depth = 25.0000 mtry 
= 2.0000   min.node.size = 9.0000  sample.fraction = 0.5267616 Value = -17.04
502  
elapsed = 6.82  Round = 5   num.trees = 351.0000    max.depth = 22.0000 mtry 
= 2.0000   min.node.size = 6.0000  sample.fraction = 0.8584217 Value = -17.21
421  
elapsed = 1.19  Round = 6   num.trees = 265.0000    max.depth = 4.0000  mtry 
= 2.0000   min.node.size = 4.0000  sample.fraction = 0.7746331 Value = -17.49
827  
elapsed = 1.77  Round = 7   num.trees = 264.0000    max.depth = 8.0000  mtry 
= 2.0000   min.node.size = 4.0000  sample.fraction = 0.588202  Value = -17.01
472  
elapsed = 6.36  Round = 8   num.trees = 467.0000    max.depth = 15.0000 mtry 
= 2.0000   min.node.size = 10.0000 sample.fraction = 0.9393052 Value = -17.08
059  
elapsed = 7.97  Round = 9   num.trees = 486.0000    max.depth = 28.0000 mtry 
= 2.0000   min.node.size = 2.0000  sample.fraction = 0.5260243 Value = -17.21
573  
elapsed = 0.91  Round = 10  num.trees = 149.0000    max.depth = 9.0000  mtry 
= 2.0000   min.node.size = 3.0000  sample.fraction = 0.5232026 Value = -17.03
313  
elapsed = 2.78  Round = 11  num.trees = 180.0000    max.depth = 27.0000 mtry 
= 2.0000   min.node.size = 2.0000  sample.fraction = 0.5565545 Value = -17.22
608  
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elapsed = 1.78  Round = 12  num.trees = 394.0000    max.depth = 6.0000  mtry 
= 2.0000   min.node.size = 7.0000  sample.fraction = 0.9982801 Value = -17.19
377  
elapsed = 4.38  Round = 13  num.trees = 290.0000    max.depth = 28.0000 mtry 
= 2.0000   min.node.size = 2.0000  sample.fraction = 0.5276458 Value = -17.15
635  
elapsed = 1.36  Round = 14  num.trees = 218.0000    max.depth = 11.0000 mtry 
= 2.0000   min.node.size = 9.0000  sample.fraction = 0.5462984 Value = -16.98
455  
elapsed = 2.53  Round = 15  num.trees = 300.0000    max.depth = 17.0000 mtry 
= 2.0000   min.node.size = 9.0000  sample.fraction = 0.5134841 Value = -17.01
019  
elapsed = 6.06  Round = 16  num.trees = 370.0000    max.depth = 23.0000 mtry 
= 3.0000   min.node.size = 8.0000  sample.fraction = 0.8471415 Value = -17.38
27  
elapsed = 4.07  Round = 17  num.trees = 260.0000    max.depth = 28.0000 mtry 
= 2.0000   min.node.size = 7.0000  sample.fraction = 0.8902364 Value = -17.26
602  
elapsed = 1.90  Round = 18  num.trees = 240.0000    max.depth = 14.0000 mtry 
= 2.0000   min.node.size = 7.0000  sample.fraction = 0.5468118 Value = -16.99
366  
elapsed = 1.51  Round = 19  num.trees = 256.0000    max.depth = 11.0000 mtry 
= 2.0000   min.node.size = 7.0000  sample.fraction = 0.5578687 Value = -16.97
165  
elapsed = 2.83  Round = 20  num.trees = 162.0000    max.depth = 17.0000 mtry 
= 5.0000   min.node.size = 2.0000  sample.fraction = 0.6589699 Value = -17.59
996  
elapsed = 1.61  Round = 21  num.trees = 164.0000    max.depth = 13.0000 mtry 
= 2.0000   min.node.size = 9.0000  sample.fraction = 0.9731164 Value = -17.06
601  
elapsed = 2.03  Round = 22  num.trees = 494.0000    max.depth = 7.0000  mtry 
= 2.0000   min.node.size = 4.0000  sample.fraction = 0.6256199 Value = -17.06
467  
elapsed = 2.68  Round = 23  num.trees = 454.0000    max.depth = 10.0000 mtry 
= 2.0000   min.node.size = 7.0000  sample.fraction = 0.5653047 Value = -16.99
275  
 
 Best Parameters Found:  
Round = 19  num.trees = 256.0000    max.depth = 11.0000 mtry = 2.0000   min.n
ode.size = 7.0000  sample.fraction = 0.5578687 Value = -16.97165  

The model returned is an optimized Ranger Random Forest model. Several key 
hyperparameters control the model’s training process, influencing its performance, 
computational efficiency, and generalization ability. The number of trees (num.trees) 
determines how many individual decision trees are grown in the forest. A larger number 
generally improves prediction stability and reduces overfitting, but with diminishing returns and 
increased computational cost. The maximum depth of trees (max.depth) limits how many 
splits a tree can have, controlling complexity: deeper trees can capture finer patterns but risk 
overfitting, while shallower trees promote generalization at the cost of underfitting. 
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The mtry hyperparameter defines the number of randomly selected features considered for 
splitting at each node. A smaller mtry increases diversity among trees (helpful for high-
dimensional data), while a larger value makes trees more similar but potentially more accurate 
when features are highly informative. The minimum node size (min.node.size) sets the 
smallest number of observations allowed in a terminal node, influencing tree granularity, 
smaller nodes capture more detail but may overfit, whereas larger nodes create smoother, 
more generalized predictions. 

Finally, the sample fraction (sample.fraction) determines the proportion of training data 
randomly sampled (with replacement) for each tree. A lower fraction increases randomness 
and speeds up training, while a value of 1.0 (using all data) may reduce variance but can make 
trees more correlated. 

Ranger result 
 
Call: 
 ranger(formula = as.formula(paste(target, "~ .")), data = full_data,      nu
m.trees = round(best[["num.trees"]]), mtry = max(1, floor(best[["mtry"]])),      
max.depth = round(best[["max.depth"]]), min.node.size = round(best[["min.node
.size"]]),      sample.fraction = min(best[["sample.fraction"]], 1), seed = s
eed,      classification = FALSE, importance = "impurity")  
 
Type:                             Regression  
Number of trees:                  256  
Sample size:                      27626  
Number of independent variables:  6  
Mtry:                             2  
Target node size:                 7  
Variable importance mode:         impurity  
Splitrule:                        variance  
OOB prediction error (MSE):       239.188  
R squared (OOB):                  0.3457674  

Note that for the Variable Importance Mode we chose the Impurity algorithm in this training 
set. There are other options that users may choose, including Mean Squared Error, permutation 
importance or Lasso regression. 

Step 5: Use the test data to get the true error of the model and rank the importance of the 
top 10 variables 

The model fit data above is based on the OOB error. We divided the training data for this model 
into 80% training and 20%. In machine learning, the training data and testing data serve 
distinct but complementary purposes in developing and evaluating a predictive model. The 
training data is the subset of the dataset used to teach the model by adjusting its parameters, 
such as split criteria in a decision tree, to minimize errors in prediction. This phase involves 
learning patterns, relationships, and structures within the data. However, evaluating a model 
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solely on the training data can be misleading because the model may overfit, meaning it 
performs exceptionally well on the training examples but fails to generalize to unseen data. 

To assess the model’s true performance and generalizability, the testing data, our separate 
20% of the dataset held-out and not used during training, is employed. This data acts as an 
unbiased benchmark, simulating real-world scenarios where the model encounters new, 
previously unseen inputs. By comparing the model’s predictions on the testing data against the 
actual outcomes, we can measure its accuracy, robustness, and ability to generalize beyond 
memorized training examples. Metrics such as classification accuracy, mean squared error, or 
precision-recall scores are computed on the testing data to gauge model fit. If performance is 
significantly worse on the testing set than the training set, it indicates overfitting, prompting 
strategies such as regularization, cross-validation, or model simplification. 

This is the code for the user function for testing the model: 

analyze_ranger_model <- function(model, data) { 
  library(ggplot2) 
  library(Metrics) 
  library(dplyr) 
 
  # Predict on provided data 
  predictions <- predict(model, data = data)$predictions 
  actuals <- data[[model$dependent.variable.name]] 
 
  # Calculate fit statistics 
  rmse_val <- rmse(actuals, predictions) 
  r2_val <- 1 - sum((actuals - predictions)^2) / sum((actuals - 
mean(actuals))^2) 
  mae_val <- mae(actuals, predictions) 
 
  fit_stats <- data.frame( 
    RMSE = rmse_val, 
    R2 = r2_val, 
    MAE = mae_val 
  ) 
 
  print("Fit Statistics:") 
  print(fit_stats) 
 
  # Plot 1: Actual vs Predicted 
  p1 <- ggplot(data.frame(Actual = actuals, Predicted = predictions), aes(x = 
Actual, y = Predicted)) + 
    geom_point(alpha = 0.6, color = "#0072B2") + 
    geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = 
"gray40") + 
    labs(title = "Predicted vs Actual", x = "Actual", y = "Predicted") + 
    theme_minimal() 
 
  print(p1) 
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  # Plot 2: Top 10 Variable Importance 
  if (!is.null(model$variable.importance)) { 
    importance_df <- data.frame( 
      Variable = names(model$variable.importance), 
      Importance = model$variable.importance 
    ) %>% 
      arrange(desc(Importance)) %>% 
      slice_head(n = 10) 
 
    p2 <- ggplot(importance_df, aes(x = reorder(Variable, Importance), y = 
Importance)) + 
      geom_col(fill = "#D55E00") + 
      coord_flip() + 
      labs(title = "Top 10 Important Variables", x = "", y = "Importance") + 
      theme_minimal() 
 
    print(p2) 
  } else { 
    message("Variable importance not available in model.") 
  } 
 
  return(invisible(fit_stats)) 
} 

Step 6: Analyze the fit of the testing function 

analyze_ranger_model(model = model, data = test_data) 
[1] "Fit Statistics:" 

RMSE 

<dbl> 

R2 

<dbl> 

MAE 

<dbl> 

14.74421 0.4413151 9.466461 
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As with the SVM model, we generated a plot of predicted versus true values using the test data. 
In the figure below, Actual FIM Total scores at Follow-up are on the x-axis and Predicted scores 
are on the y-axis. Notice that the model predicts high scores with great accuracy but does not 
predict low scores well. Thus, a significant portion of the error comes from the model’s inability 
to predict lower values. 
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Finally, the model returned the top ten variables of importance. Note that, while the algorithm 
looked for ten variables, it only found six. This is the result of our minimal set of predictor 
variables for the sake of reducing model runtime. If users select a larger set of predictors, the 
model will return the top ten of importance. 
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Appendix 

TBIMS Missing Data Codes 
The table below contains variables with special 8-based missing codes. These codes exist for 
these variables in addition to any 8, 88, 888, or 8888 codes that reflect a value of Not 
Applicable. The final column in the table shows how we defined data availability for a particular 
code. 

Variable Group Item Code Form 1 or 2 Availability 
Classification 

GAD 

If the interview is being done by proxy 
(vs the participant themselves), all 
items are coded 82 - Not Applicable: 
No data from person with TBI 

82 2 Not Available 

 
If first two items (GADNervousF and 
GADCntrlWryF) are coded 0 - Not at All, 
then the remaining items are coded 81 
- Not Applicable 

81 2 Not Available 

 Remaining items are GADWorryF, 
GADRelaxF, GADRestlessF, 
GADAnnoyF, GADAfraidF, GADDifficultF 

  

 

CARE Tool 
This is for all variables that begin with 
MOB, for Mobility, or SC, for Self-Care. 
If activity was not attempted, code the 
reason: 

 1 

 

 81 - Not applicable - Not attempted 
and the patient/resident did not 
perform this activity prior to the 
current illness, exacerbation, or injury. 

81  

 

 
82 - Not attempted due to 

environmental limitations (e.g., lack of 
equipment, weather constraints) 

82  

 
 83 - Not attempted due to medical 

condition or safety concerns 
83  
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Variable Group Item Code Form 1 or 2 Availability 
Classification 

 

84 - Did Not Meet Criteria for 
Administration (To be used if 
participant leaves AMA, returns to ICU 
and does not return to rehab, or is 
only on rehab unit for 24 hours or 
less). 

84  

 
IntStatus 87 - Future FollowUpPeriod 87 2  
Collection 
Methods Includes the following variables: 

 2 
 

 CollectionMethodPrimaryF 81 - NA: 
Funding Not Available 

81  
Not Available 

 CollectionMethodPrimaryF 82 - Not 
Applicable 

82  
Not Available 

 CollectionMethodSecondaryF 81 - 
NA: Funding Not Available 

81  
Not Available 

 
CollectionMethodSecondaryF 82 - 

NA: No Secondary Method of Data 
Collection 

82  

Not Available 
 LostReasonF 81 - Not Applicable 81  1 - Not Lost 

 LostReasonF 82 - Not Applicable, 
Expired 

82  
1 - Not Lost 

 LostReasonF 83 - Not Applicable, 
Funding Not Available 

83  
0 - Lost 

 ReasonNoDataIndF 81 - Not 
Applicable, Funding Not Available 

81  
0 - Lost 

 ReasonNoDataIndF 82 - Not 
Applicable, Data Was Provided 

82  
1 - Not Lost 

 LengthInterviewF 8881 - NA-Data 
Collected Online 

8881  
Not Available 

 LengthInterviewF 8882 - NA-Data 
Collected by Mail-Out 

8882  
Not Available 

PHQ 

If the interview is being done by proxy 
(vs the participant themselves), all 
items are coded 82 - Not Applicable: 
No data from person with TBI 

82 2 Not Available 
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Variable Group Item Code Form 1 or 2 Availability 
Classification 

 
If first two items (PHQPleasureF and 
PHQDownF) are coded 0 - Not at All, 
then the remaining items are coded 81 
- Not Applicable 

81 2 Not Available 

 
Remaining items are PHQSleepF, 

PHQTiredF, PHQEatF, PHQBadF, 
PHQConcentrateF, PHQSlowF, 
PHQDeadF, PHQDifficultF 

  

 
Employment Includes the following variables:  2  

 
DaysTo1stEmpF: 

88888 - No Competitive Employment 
Since Injury 

88888  

 

 
DaysTo1stEmpF: 

88999 - Began Competitive 
Employment in Prior Follow-Up Year 

88899  
Could pull the value 
from the previous 

follow-up interview. 
Alcohol Includes the following variables:  Both 1 and 2  

 
ALC4DrinksF, ALC5DrinksF, 

ALCDrinksF: 
881 - Not Applicable 

881  Not Available 

 

ALC4DrinksF, ALC5DrinksF, 
ALCDrinksF: 
882 - Not Applicable: Variable not due 
this year  (Code no longer used; data 
now collected in all follow-up years) 

882  Not Available 

 ALCAnyDrinkF: 
81 - Not Applicable 

81  Not Available 

 
ALCAnyDrinkF: 

82 - Not Applicable: Variable not due 
this year  (Code no longer used; data 
now collected in all follow-up years) 

82  Not Available 

 ALCWeekF: 
81 - Not Applicable 

81  Not Available 

 
ALCWeekF: 

82 - Not Applicable: Variable not due 
this year 

82  Not Available 
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Variable Group Item Code Form 1 or 2 Availability 
Classification 

SWLS Includes the following variables:  2  

 

SWLSCondF, SWLSIdealF, 
SWLSImprtF, SWLSSAtF: 
81 - Not Applicable: Variable not due 
this year  (Code no longer used; data 
now collected in all follow-up years) 

81  Not Available 

 
SWLSCondF, SWLSIdealF, 

SWLSImprtF, SWLSSAtF: 
82 - Not Applicable: No data from 
person with TBI 

82  Not Available 

Transportation Includes the following variables:  2  

 
TransModeF: 

81 - Not Applicable: Variable not due 
this year  (Code no longer used; data 
now collected in all follow-up years) 

81  Not Available 

 
TransModeF: 

82 - Not Applicable: No motorized 
transportation 

82  

Could do 0 = No 
Motorized 

Transportation OR 5 
= Non-Motorized 

Transportation 

Data Transformations 
The table below shows which variables are defined as continuous, which are categorical whose 
categories could be collapsed if desired, which benefit from being dummy encoded, and 
variables which change over time (such as having separate variables for admission and 
discharge). 

Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

Data 
1 SubjectId      

1 Birth      

1 Center TBIMS Centers  X X  

1 DataFrom 9 Categories  X X  

1 DataMethod      
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 Death      

1 DeathCause1      

1 DeathCause2      

1 DeathECode      

Demographic 
1 Age Calculated  X    

1 BMI Calculated X    

1 BMICat 8 Categories  X   

1 Height Used for BMI 
calculation X    

1 Weight Used for BMI 
calculation X    

1 SexF Binary     

1 LngSpkHmF 3 Categories  X X  

1 LngSpkHmOthF 
Free form 
answers based 
on LngSpkHmF 

 X   

1 EthnicityF Binary     

1 RaceAsnF Binary     

1 RaceBlkF Binary     

1 RaceIndF Binary     

1 RacePIF Binary     

1 RaceWhtF Binary     

1 EMPLOYMENT 10 Categories 
(Calculated) 

 X   

1 Emp1 15 Categories  X   

1 Earn 
11 Categories 
(large 
missingness) 

 X   

1 OCC 14 Categories  X   

1 EDUCATION 12 Categories 
(Calculated) 

 X   

1 EduYears 21 Categories  X   

1 GED Binary     
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 SpEd Binary     

1 LivWhoDis 4 Categories  X X Discharge 
1 LivWhoInj 4 Categories  X X Injury 
1 ResDis 10 Categories  X X Discharge 
1 ResInj 10 Categories  X X Injury 
1 Mar 6 Categories  X   

1 MILCombatF Binary     

1 MILYearsF      

1 MntlEver Binary     

1 MntlPrior Binary     

1 PsyHosp Binary     

1 PsyHospPrior Binary     

1 Suicide Binary     

1 SuicidePrior Binary     

1 ZipDis     Discharge 
1 ZipInj     Injury 

Drugs/Alcohol 

1 ALC4Drinks Count X    

1 ALC5Drinks Count X    

1 ALCAnyDrink Binary     

1 ALCDrinks Count X    

1 ALCWeek Count X    

1 DRINKCat 4 Categories 
(Calculated) 

 X   

1 PROBLEMUse Binary 
(Calculated) 

    

1 Drugs Binary     

1 MJPrescribe Binary     

1 MJUse Binary     

1 SmkCig 3 Categories  X X  

Injury 
1 AcutePay1 10 Categories  X X  

1 AcutePay2 10 Categories  X X  
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 RehabPay1 10 Categories  X X  

1 RehabPay2 10 Categories  X X  

1 Cause 18 Categories  X   

1 CauseE1 ICD Codes     

1 CauseE2 ICD Codes     

1 SCI Binary     

1 Craniotomy 4 Categories  X X  

1 HospSeiz Binary     

1 Seiz24 Binary     

1 Seiz24to7 Binary     

1 Seiz7Plus Binary     

1 LOSAcute Calculated X    

1 LOSRehab Calculated X    

1 LOA1End      

1 LOA1Start      

1 LOA2End      

1 LOA2Start      

OSU-TBI 
1 cntAnyInjuries Count X X X  

1 cntAnyAfterIndex Count X X X  

1 cntAnyBeforeIndex Count X X X  

1 cntAnyBefore15yr Count X X X  

1 cntAnySameIndex Count X X X  

1 cntLOCInjuries Count X X X  

1 cntLOCAfterIndex Count X X X  

1 cntLOCBeforeIndex Count X X X  

1 cntLOCBefore15yr Count X X X  

1 cntLOCSameIndex Count X X X  

1 cntModSevInjuries Count X X X  

1 cntModSevAfterIndex Count X X X  

1 cntModSevBeforeIndex Count X X X  

1 cntModSevBefore15yr Count X X X  

1 cntModSevSameIndex Count X X X  
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 MostSevere Count X X X  

1 TBI_IDAsked      

1 YoungestAgeTBI Continuous X    

CT 

1 CTStatus 
CT variables 
dependent on 
this question 

    

1 CT5a1CorticalLFront Binary     

1 CT5a2CorticalRFront Binary     

1 CT5a3CorticalNFront Binary     

1 CT5b1CorticalLTemp Binary     

1 CT5b2CorticalRTemp Binary     

1 CT5b3CorticalNTemp Binary     

1 CT5c1CorticalLPar Binary     

1 CT5c2CorticalRPar Binary     

1 CT5c3CorticalNPar Binary     

1 CT5d1CorticalLOcc Binary     

1 CT5d2CorticalROcc Binary     

1 CT5d3CorticalNOcc Binary     

1 CT5e1CorticalLUnk Binary     

1 CT5e2CorticalRUnk Binary     

1 CT5e3CorticalNUnk Binary     

1 CT6aNonCortL Binary     

1 CT6aNonCortN Binary     

1 CT6aNonCortR Binary     

1 CT7a1AxialLEpi Binary     

1 CT7a2AxialREpi Binary     

1 CT7a3AxialNEpi Binary     

1 CT7b1AxialLSub Binary     

1 CT7b2AxialRSub Binary     

1 CT7b3AxialNSub Binary     

1 CT7c1AxialLNS Binary     

1 CT7c2AxialRNS Binary     
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 CT7c3AxialNNS Binary     

1 CT7d1FalcineSub Binary     

1 CT7d2FalcineSAH Binary     

1 CT7d3FalcineUnk Binary     

1 CTComp 5 Categories  X   

1 CTFrag Binary     

1 CTIntracrain Binary     

1 CTIntraventricular Binary     

1 CTPunctate Binary     

1 CTSubarachnioid Binary     

DRS 
1 DRSA Calculated X   Admission 
1 DRSD Calculated X   Discharge 
1 DRSEmpA  X   Admission 
1 DRSEmpD  X   Discharge 
1 DRSEyeA  X   Admission 
1 DRSEyeD  X   Discharge 
1 DRSFeedA  X   Admission 
1 DRSFeedD  X   Discharge 
1 DRSFuncA  X   Admission 
1 DRSFuncD  X   Discharge 
1 DRSGroomA  X   Admission 
1 DRSGroomD  X   Discharge 
1 DRSMotA  X   Admission 
1 DRSMotD  X   Discharge 
1 DRSToiletA  X   Admission 
1 DRSToiletD  X   Discharge 
1 DRSVerA  X   Admission 
1 DRSVerD  X   Discharge 

FIM 
1 FIMCOGA Calculated X   Admission 
1 FIMCOGD Calculated X   Discharge 
1 FIMMOTA Calculated X   Admission 



 

48 

Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 FIMMOTD Calculated X   Discharge 
1 FIMTOTA Calculated X   Admission 
1 FIMTOTD Calculated X   Discharge 
1 FIMCompA  X   Admission 
1 FIMCompD  X   Discharge 
1 FIMExpressA  X   Admission 
1 FIMExpressD  X   Discharge 
1 FIMMemA  X   Admission 
1 FIMMemD  X   Discharge 
1 FIMProbSlvA  X   Admission 
1 FIMProbSlvD  X   Discharge 
1 FIMSocialA  X   Admission 
1 FIMSocialD  X   Discharge 

GCS 
1 GCSCat 4 Categories  X   

1 GCS Calculated X    

1 GCSTot  X    

1 GCSEye  X    

1 GCSMot  X    

1 GCSVer  X    

Severity 
1 TFCDays Calculated X    

1 PTADays Calculated X    

1 PTAdate      

1 PTAMethod      

Pre-Injury Conditions 

1 PreconBlind Binary     

1 PreconDeaf Binary     

1 PreconPhys Binary     

1 PrelimDress Binary     

1 PrelimLearn Binary     

1 PrelimOuthm Binary     
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Form 1 or 2 Variable Type Continuous 

Categorical 
Variables 

to be 
Collapsed 

Variables 
to be 

Dummy 
Encoded 

Variables 
that 

Change 
Over 
Time 

1 PrelimWork Binary     

Calculated Variables 
Calculated variables are defined as those that are created via a formula using other variables as 
inputs. These are distinct from the TBIMS Data Dictionary definition, which includes any 
variable that has been created via any form of variable manipulation. Below is a list of all 
variables in the TBIMS Data Dictionary which meet the white paper definition of "calculated 
variable." This list does not include variables that are subtractions of dates. 

Calculated Variable Input Variables 
B3TCOMP, B3TCOMPF All BTACT item-level variables 

B3TEF, B3TEFF All BTACT executive functioning item-level variables 
B3TEM, B3TEMF All BTACT episodic memory item-level variables 

BMI Height, Weight 
All DRS total scores All DRS item-level variables 

FIMCOGA, FIMCOGD, FIMMOTA, 
FIMMOTD, FIMTOTA, FIMTOTD, 
FIMCOGF, FIMMOTF, FIMTOTF 

All FIM item-level variables 

GAD7TOTF All GAD7 item-level variables 
GCS All GCS item-level variables 

GOSEF All GOSE item-level variables 
Malec_Prod PRTWork, PRTSchool, PRTHome 
Malec_Social PRTSocFrnd, PRTSocFam, PRTEmotSup, PRTInternet 

PART_BalancedF PARTOutAbout, PARTProductivity, PARTSocial, PARTSummary 
PART_Domain_OutF PARTOutAbout, PARTSummary 
PART_Domain_ProdF PARTProductivity, PARTSummary 
PART_Domain_SocF PARTSocial, PARTSummary 

PART_SDF PARTOutAbout, PARTProductivity, PARTSocial, PARTSummary 

PARTOutAboutF PRTOutHse, PRTEatOut, PRTShop, PRTPlaySport, PRTMovie, 
PRTWtchSport, PRTReligion 

PARTProductivityF PRTHome, PRTSchool, PRTWork 

PARTSocialF PRTSocFrnd, PRTSocFam, PRTEmotSup, PRTInternet, PRTSpouse, 
PRTRelation, PRTFriend 

PARTSummaryF PARTOutAbout, PARTProductivity, PARTSocial 
PHQ9TOTF All PHQ9 item-level variables 
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Calculated Variable Input Variables 
PROBLEMUse, PROBLEMUseF Drugs, ALC5Drinks, DrinkCat 

SWLSTOTF, SWLSTOT4F All SWLS item-level variables 

TBIMS_NSDI_2019 
PercentUnemployed, PercentSingleHoH, PercentNoHSorGED, 

PercentBSorUp, PercentBelowPoverty, PercentSNAP, 
MedHHIncome, MedFamIncome 
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